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Structures built from octahedral AX, groups that share some or all of their X atoms
may be classified according to the numbers of octahedra to which the X atoms belong.
If v, is the number of X atoms of each AX, group in a structure of composition A,, X,
which are common to x such groups (that is, x is the coordination number of X) then
2y, = 6 and X(v,/x) = n/m. The solutions of these equations for any composition
A,, X, may be examined systematically. The present survey is restricted to structures
in which m = 1 or 2 which can be constructed from regular octahedral AX; groups
all of which share their X atoms in the same way and have no XX separations shorter
than the edge of an octahedron. A study is made of the types of possible structure,
finite, one-, two-, or three-dimensional, and the emphasis is on the topology rather
than the geometry of the structures.

INTRODUCTION

When a new structure is discovered, it is usually possible to compare it only with other known
structures of a similar type, because a comprehensive survey of the geometrically possible
structures has not been made. However, an understanding of the structural chemistry of a
particular group of compounds implies that we should understand why certain structures are
adopted in preference to others, which can be visualized, but are not adopted by actual
compounds. For example, the cubic close-packed octahedral 3D structure which is the idealized
structure of the mineral atacamite, Cu(OH),Cl, is notknown for a compound AX,. Edge-sharing
octahedral structures of composition AX, based on 3D 3-connected nets are geometrically
possible but not observed; neither is one very simple vertex-sharing AX, structure to which
we refer later. The adoption of more complex chain structures by Hf I, and ZrI, in preference
to the simpler chain structures of a-Nbl, and TcCl, also emphasizes the need for systematic
studies which make possible a comparison of known with unknown structures having certain
specified characteristics.

There is an indefinitely large number of ways of joining together octahedra to form structures
which may be finite or extend indefinitely in one, two, or three dimensions. It would be
necessary to consider all the possible types of compounds with the formula A,,X,, and then to
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see how these can arise by sharing vertices, or edges, or faces, or all three. Because of the
magnitude of the problem it is necessary to break it down into subdivisions amenable to some
kind of systematic treatment. We shall introduce the following restrictions: (i) all octahedra
in a structure are topologically equivalent, that is, the arrangement of shared vertices, edges,
or faces of each octahedron is the same (or its mirror image if the arrangement is chiral);
(ii) it must be possible to build the structure from regular octahedra; (iii) all distances between
X atoms of different octahedra must be at least equal to the length of the edge of an octahedron.
This is what is meant later by ‘acceptable X-X distance’. Some consequences of (iii) were
explored earlier (Wells 1973).

Each X atom of each AX coordination group is bonded to some number x of A atoms; this
number, the coordination number of X, may be different for different X atoms. If v, is the
number of X atoms of each AX; group which belong to x such groups, then Xy, = 6 and
X(v,/x) = n/m in a compound A, X, . This survey is restricted to structures in which m =1
or 2. Solutions involving values of x greater than six are omitted from table 1 because no more
than six regular octahedra can meet at a point while maintaining acceptable X-X distances.
(In Th,yP,, eight distorted octahedral PThg groups meet at each Th atom.) Solutions involving
values of v; are relevant only for AX, (v; = 1, v, = 5) and A, X, (v, = 1, v; = 5). Structures
have been found only for the solutions designated by Roman numerals in the second column
of the table.

Our primary classification in terms of the coordination numbers of the X atoms does not
provide a convenient means of deriving the arrangements of octahedra that correspond to the
solutions of table 1. These structures arise by the sharing of vertices, edges, or faces or all three
between the octahedra, and the gross topology of a structure is determined by the number of
octahedra to which each is joined. For example, if each octahedron is joined to one other
octahedron, by sharing one vertex, edge, or face, the result can only be a finite group of two
octahedra. If each octahedron is joined to two others the result is a ring or chain of linked
octahedra, and if each is joined to three or more others all four main types of structure are
possible, namely, polyhedral groups or structures extending indefinitely in one, two or three
dimensions. The present study is therefore a logical sequel to the study of two- and
three-dimensional nets.

The connection between octahedral structures and nets is most obvious for the class I
structures of table 1, in which each X atom is either unshared (v, vertex) or shared between
two octahedra (v, vertex). The sharing of an X atom between two octahedra may be realized
by the sharing of V vertices, E edges, or F faces, it being noted that the values of ¥ and E do
not include the vertices and edges implied by face-sharing, or the vertices of shared edges. The
sum of V, E and F is the number of octahedra to which each is joined, and therefore determines
the type of net on which the structure must be based. This approach is illustrated in tables 2,
4, 5, and 6 for structures of composition A,X,, AX,, A, X, and AX, respectively.

Reference will be made to a number of 3D three-connected nets. As in the case of
two-dimensional nets (tessellations) three-dimensional nets may be described in terms of the
smallest polygonal circuits of which they are composed, a circuit being defined as the shortest
path starting from a point along one link and returning to the starting-point along another
link. In a three-connected net there are three ways of selecting two of the three links that meet
at any point and therefore three circuits to be specified for any point. We confine our attention
to nets in which the types and arrangement of circuits are the same for all points. That is, there
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TABLE 1. OCTAHEDRAL STRUCTURES CLASSIFIED ACCORDING TO THE NUMBERS (v,)
OF ¥-CONNECTED X ATOMS OF EACH AX; GROUP

formula class v, vy vy vy g Vg

A Xy, I 5 1 — — — —

AX, I 4 S —

A X, I 3 3 — — — —

4 — 2 — —

4 — 1 — — 1

AX, I 2 I —

II 3 — 3 — — —

3 1 — 2 — —

3 1 1 — — 1

AX, I 1 5 — — — —

II 2 1 3 — —

III 2 2 — — —

2 2 1T - — 1

3 — — — — 3

AX, I — 6 — — — —

II 2 — — 4 — —

111 1 2 3 — — —

v 1 3 — 2 — —

2 — 2 — — 2

2 1 — — — 3

1 3 1 — — 1

2 — 1 2 — 1

AX, I 1  — 4 - —

1I 1 — 3 2 — —

II1 — 3 3 — — —

v — 4 — 2 — —

— 4 1 — — 1

1 — 4 — — 1

1 1 1 2 — 1

1 1 2 — — 2

1 2 — — — 3

AX, I — 6 — — —
II — 2 — 4 —

111 T - = = 5 —

v — 1 3 2 — —

A% — 2 1 2 — 1

— 3 — — — 3

_ 9 2 — —_ 2

_ 1 4 — — 1

1 — — 2 — 3

R - — 4

AX, I — — — 6 — —

II — — 3 — — 3

III — 1 — — 5 —

v — 1 — 2 — 3

— 1 1 — — 4

— — 1 4 — 1

— — 2 2 — 2

AX — — — — — 6
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is a configuration of the net that may be described by a set of equivalent points in one of the
230 space groups. If all the shortest circuits are n-gons, the net symbol is #®. In two dimensions
there is the unique 62 net, but in three dimensions the series continues with nets 73, 83, 93, 103,
and 12%. Moreover, in all cases except 122 there are several nets with the same numerical symbol,
and it is necessary to distinguish these as 73-a, n3-b, and so on. The simplest 3D three-connected
nets (those with the smallest possible number (4) of points in the repeat unit) are two different
three-dimensional arrays of 10-gons which are designated 103-a and 10%-b; the third net of this
family is 10%-c. This nomenclature for 3D nets is simply an extension of the Schlaffli symbols
for polyhedra and 2D nets in which, for example, 33, 4%, and 5% represent the tetrahedron,
hexahedron, and pentagonal dodecahedron, and 6 the planar hexagon net. Corresponding
to the Archimedean solid (4. 62) (truncated octahedron), and the 2D net (4. 82), there are 3D
nets: 4.122; 4.142; and 4. 162. Here also different nets with the same numerical symbol are
distinguished as, for example, 4.142-a; 4.14%-b; and 4.14%c. An introduction to nets is
available (Wells 1984) and also more detailed treatments (Wells 1977, 1979). Detailed
descriptions of structures that are adequately described elsewhere will not be given.

OCTAHEDRAL STRUGTURES A X,

The only solution (v, = 5, v, = 1) corresponds to a pair of octahedra sharing one vertex.

OCTAHEDRAL STRUCTURES AX,

The only solution (v, = 4, v, = 2) may be realized in two ways:

(@) one vertex may be shared with each of two different octahedra, the shared vertices being
either trans (a,) or cis (a,);

(b) one edge is shared.

Subgroup a. The possible structures are shown in figure 1. Large rings (AX;),,, n = 12, could
be formed from the trans chain a,, but smaller ones would have unacceptable X-X distances
within the rings. In the cyclic systems formed from the ¢is chain a,, X~X contacts on the outside

NN
ZANZN

a,

ag

Ficure 1. Linear and cyclic AX; structures.
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of the ring set an upper limit (n = 6) to the ring size. The cyclic (AX;), represents the molecular
structure of a number of pentafluorides.

Subgroup b. A pair of edge-sharing regular octahedra has only one configuration, with the four

atoms A\ /A coplanar. Since pairs of edge-sharing octahedra appear in various orientations

X

in later figures, four views are shown in figure 2.

Freure 2. Four views of a pair of edge-sharing octahedra.

OCTAHEDRAL STRUCTURES A,X,

Of the three solutions listed in table 1 only the first appears to be realizable with regular
octahedra, if all share vertices, edges, or faces in the same way. The solution (v, = 4, v, = 2)
may be eliminated on the following grounds. There are five ways of arranging four regular
octahedra which meet at a common vertex (figure 3a—e), assuming acceptable distances
between X atoms of different octahedra, and some or all of the octahedra share more than one
edge. One vertex of each shared edge is the v, vertex; the other must be at least two-connected.
The sharing of two or more edges (meeting at the v, vertex) implies three or fewer v, vertices,
thus eliminating the solution (», = 4, v, = 2). Note that this restriction applies only to regular

(@) (b) (c)

(d) (e) (f)

(g)

<

Ficure 3. Groups of four regular octahedra with a common vertex.




STRUCTURES BUILT FROM REGULAR OCTAHEDRA 559

octahedra. In the arrangement (f) of figure 3 there are distances between X atoms of different
octahedra only 0.76 of the octahedron edge length, and moreover, the above argument does
not apply because only one shared edge of each octahedron comes to the v, vertex. In fact,
this arrangement is found in the 3D anion framework of BaU,0O,, in which there is appreciable
distortion of the UO, octahedra (U-O, 1.84 A (two), 2.12 A (two), 2.33 A (two))?. It would
give rise to the A, X, chain of figure 3¢, in which alternate pairs of edge-sharing octahedra
are rotated through 90°.

The solution (v, = 4, v; = 1, v, = 1) is not possible for the following reason. There are two
possible arrangements of six regular octahedra with a common vertex with acceptable X-X
distances. In each of these arrangements, four of the edges of each octahedron that meet at
the v, vertex are shared edges. Therefore, at least four other vertices of each octahedron must
be at least two-connected, or, in other words, there cannot be more than one v, vertex in each
octahedron.

Structures of class 1: v, = 3, v, =3

This solution may be realized in three essentially different ways. An octahedron is joined
to three, two, or one octahedra respectively by sharing three separate vertices, one vertex and
one edge, or one face. Moreover, in the first two cases there are two arrangements (mer and
JSac) of the three shared X atoms (figure 4). There are five types of structure to consider
(table 2). \

Class I (a).

Subgroup a,. In this subgroup we find structures of all major types, finite, one-, two-, and
three-dimensional. The double chain (ladder) is illustrated in figure 5a. The ends of a portion
cut from this chain may be joined to form a double ring, but because of X-X contacts within

b, b, B
Ficure 4. Relative positions of shared X atoms (circles) in the subgroups a, and a, (three vertices shared),
and in b, and b, (one edge and one vertex shared).

TaBLE 2. A,X, STRUCTURES OF CLASS I

vV E F
a, (mer) o .
;, %fac))} 3
1 (mer
by (o)) rr=
c —_ — 1

+1A=10""m=0.1 nm.
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such a double ring each of the two rings must contain at least 12 octahedra, i.e. the formula
is (A,X,),, where n > 12. Figure 55 shows a portion of a layer based on the 4.8% net, and
3D structures include those based on the nets 103-b and 103%-c; the former is illustrated in
figure 6. ‘

a) (b)
N
@
K
*

py

NANANAN

SONANANAN

FiGure 5. A X, structures of subgrbup a,: (a) double chain (ladder); (b) layer based on the 4.8 net.

Ficure 6. A, X, structure based on the net 10%-b.

Subgroup a,. These also include three-connected finite, one-, two-, and three-dimensional
structures. The three polyhedral complexes based on the three regular three-connected solids
(tetrahedron (3%), cube (4%), and pentagonal dodecahedron (5%)), are illustrated in figure 7
and figure 8, plate 1. The second of these AgXg4, is the second member of a family of structures
(AyX,), based on the (three-connected) prisms. In this family the value of 7 is restricted to
the values 3, 4, 5, and 6 because in the larger prismatic structures-the distance between X atoms
of different octahedra becomes less than the edge length. Infinite one-dimensional structures
include the double chain (folded ladder) of figure 9, and tubular chains formed from strips of
6® and other three-connected nets wrapped around the surface of a cylinder. Layers are based
on 2D three-connected nets, and the simplest, based on 6® (figure 10), represents the
continuation of the family of polyhedral structures based on 33, 4%, and 5° noted above. This
is the form of the anion in CsgBi,Cl,. Framework structures can be built based on 3D
three-connected nets. In the structures based on the nets 4.142-a and 6. 102 rings of four or
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Figure 7. The A, X, and AgX;, complexes of subgroup a,.

Y4

Ficure 9. Plan and elevation of the double chain (A,;X,),, of subgroup a,.

Figure 10. The A,X, layer of subgroup a, based on the 6° net.

six octahedra (figure 11) are joined to form tetragonal or rhombohedral frameworks, a ring
replacing a single point in the diamond net or P lattice.

Class 1 (b) ‘1

Subgroups b, and b,. Here each octahedron is joined to only two others, and therefore the
structures are limited to cyclic or chain structures. Since a pair of edge-sharing octahedra form
a rigid group we have to consider the four arrangements of figure 12. All give rise to chains,
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{a)

Ficure 11. Rings of (a) four and (#) six octahedra in the 3D A, X, structures of subgroup a, based on
the nets 4. 14%-a and 6. 10 Circles represent shared X atoms.

b,

Ficure 12. The subgroups b, and b, of A, X, structures. Circles represent shared X atoms.

and b, (i) also to cyclic structures (A, X,),,, 7 = 3, 4, 5, or 6; the upper limit to n is set by contacts
between X atoms external to the ring.

Class 1 (c)

The only structure is the finite A, X, group consisting of a pair of octahedra sharing one face,
which represents the structure of molecules and ions such as Fe,(CO),, (Cr,Cly)3~, and others.

OCTAHEDRAL STRUCTURES AX,

These include structures of all four major types, finite, and infinite one-, two-, and
three-dimensional, and of these only the edge-sharing structures have previously been
considered in any detail (Miiller 1981). Three solutions of table 1 are closely related to those
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for tetrahedral AX, structures (Wells 1983 a) : but whereas tetrahedral structures of all the three
classes of table 3 can be built, it seems that octahedral structures of only the first two classes are
possible, though this point is difficult to prove. Assuming this to be true we have only two classes
to examine, and we therefore first study how these solutions are realizable as systems of
octahedra sharing various combinations of vertices, edges, or faces, alone or in combination.

TaBLE 3. TETRAHEDRAL AX, AND OCTAHEDRAL AX, STRUCTURES

tetrahedral octahedral }

AX, structures v vy g vy AX, structures vy vy vy v,
class I — 4 — — class I 2 4 — —
class II 1 — 3 — class II 3 — 3 —
class ITI 1 1 — 2 : — 3 1 — 2

Structures of class 1: v, = 2, v, = 4

The two-coordination of each X atom can be realized by the sharing of:

(a) four vertices, each with a different AX, group. The unshared vertices may be trans (a,)
or cis (a,), when the shared vertices are equatorial (coplanar) or skew (non-coplanar),

() twoedgeswhich have nocommon vertex;acommon vertex would imply a three-connected
X atom. Here also there are two subgroups, the shared edges being either trans (b,) or skew
(b2); :
(¢) one edge with one octahedron and one vertex with each of two other octahedra. Here
two subgroups correspond to those in (), namely, the shared vertices lie at the ends of trans
(c,) or skew (c,) edges, but there is also a third possibility (c,), that the shared edges are in
- trans positions in each octahedron,
(d) one face with one octahedron and a fourth X atom with a second octahedron.
These subgroups ae summarized in table 4.

TABLE 4. SUBGROUPs OF cLASs I AX, STRUCTURES

subgroup vV E F
a,a, 4 — —
1b; - 2 -
€,CyCq 2 1 —

1 — 1

Class 1(a)

Subgroup a,. The linking of octahedra through the four coplanar (equatorial) X atoms leads
to structures based on 2D and 3D four-connected nets. The simplest layer structure is therefore
that based on the square (4*) net; it represents the layer in SnF,, NbF,, and SnF,(CH,),. The
simplest 3D structure (figure 13, plate 1) is based on the net 6482, in the most symmetrical (cubic)
configuration of which each point is connected to a square coplanar group of nearest
neighbours. (If alternate points represent Nb and O atoms, this net represents the structure
of NbO.) No example of this AX, structure is known. The unit cell may be derived from eight
unit cells of the AX; (ReO,) structure, in which AX; octahedra share all six vertices, by
removing one-quarter of the A atoms. In the most sy‘mmetrical configuration of this structure
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the X atoms therefore occupy three-quarters of the positions of cubic closest packing, as do
the O atoms in the ReO, structure.

Subgroup a,. This subgroup includes structures that extend indefinitely in one, two, or three
dimensions; some may be derived from A,X, or AX, structures by sharing an additional one
or two vertices. Thus, reflection if the A, X, ladder or layer of figure 5 across a mirror plane
parallel to that of the paper produces a tubular chain or double layer of composition AX,. One
reflection of the cis AX; chain of figure 1 (a,) gives the A, X, double chain (folded ladder) of
figure 9, while continued repetition gives a corrugated AX, layer based on the 4* plane net.
A square in figure 1 then represents an infinite chain of vertex-sharing octahedra perpendicular
to the plane of the paper. The tubular chains (AX,), related in this way to the rings of
figure 1(a,) are subject to the same limitation as the rings, that is, n = 3, 4, 5, or 6 only. The
infinite (AX,),,, chain is the form of the anion in CsCrF,.

The simplest 3D structure formed from octahedra sharing four skew vertices is based on
the simplest 3D four-connected net; the diamond net (6%); it represents the structure of IrF,
(figure 14, plate 1), in which the underlying diamond net is considerably distorted from its most
symmetrical (cubic) configuration. There is a close analogy here with AX; structures, which
suggests a reason for the adoption by IrF, of the much less symmetrical structure in preference
to the structure of figure 13. No fluorides adopt the ReQOj structure, with collinear —X— bonds;
instead, they have more compact structures in which the F interbond angle is either close to
150° (as in CoF,) or 132° (IrF,). In the latter crystal the F atoms are arranged in one of the
most compact ways possible. Instead of occupying three-quarters of the positions of cubic closest
packing they are arranged in hexagonal closest packing. For the vertex-sharing AX, halide
structures there is a similar choice, between the structure of figure 13 with collinear F bonds
and the more compact IrF, structure, with F bond angle of 132° and hexagonal closest packing
of the F atoms. It is interesting to note that in all the halides IrF,, IrF,, and IrF; the F atoms
are arranged in hexagonal closest packing.

Class 1(b)

In this class each octahedron is connected to two others, and therefore the only possible
structures are rings or chains. From maintaining the usual minimal distance between X atoms
of different octahedra, a pair of edge-sharing octahedra is a rigid group. We may accordingly
derive the possible structures in class I(b) and I(c) from sub-units consisting of pairs of
edge-sharing octahedra.

Subgroup b,. The sharing of trans edges by each octahedron gives the single structure of
figure 15 (b,), the strictly linear Nbl, chain.

Subgroup b,. The sharing of skew edges (non-opposite, with no common vertex) produces an
indefinitely large numer of cyclic and linear structures, the simplest of which were described
some years ago (Wells 1970). Relative to a given edge there are four edges which have no vertex
in common with the first edge. On an isolated octahedron these four edges are symmetrically
equivalent, but the configuration of chain or ring is determined by the choice of pairs of
edges of successive octahedra. If we arbitrarily choose one edge of the left-hand octahedron in
figure 15 (b,) as the second shared edge then there are four ways of choosing the second shared
edge of the adjacent octahedron. The simplest structures arise if the same relationship is
maintained between all successive pairs of octahedra; they are illustrated in figure 16. The pairs
of octahedra (i) and (ii) of figure 15 are related by a mirror plane and a centre of symmetry
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Ficure 15. Octahedra sharing two edges in the two subgroups of class I (b).

or

(i) (ii) N

=3,

(1ii)

———— >4,

!X 1
(iv)

b,
Ficure 16. The five simplest structures corresponding to the edge-sharing pairs of octahedra of figure 15.

respectively, but (iii) and (iv) are chiral. The chains (iii) and (iv) of figure 16 are accordingly
helical, with 3; and 4, axes respectively. An indefinitely large number of more complex rings
and chains are formed from combinations of the sequences (i)—(iv) of figure 15 (b,), for example,
six from sequences such as (i) (ii) ... and 12 from sequences such as (i) (i) (ii) .... A systematic
study has been made of those groups of rings and chains (Miiller 1981) that are of interest
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in connection with the structures of halides MX,. Examples of the structure of figure 16 (b,)
include:

() TeMo,Ok;

(i) TecCl,, Li(CuCl,.H,0).H,0;

(iii) —
(iv) [Na(H,0),]%* in Na,[SiO,(OH),].8H,0;

and more complex sequences are found in crystalline HfI, and ZrI,.

Class 1(c)

This class presents a far greater range of types of structure than class I(b). Since each
octahedronis connected to its neighbours by sharing one edge and two vertices, a three-connected
system is formed in contrast to the two-connected systems of class I (b). The sub-units include
five which correspond to those of I (b): namely, ¢, (one) and c, (four), and, in addition, a sixth
arrangement of shared vertices c, which is not possible in class I (b). These six sub-units are
shown in figure 17.

Ficure 17. Octahedra sharing one edge and two vertices in the three subgroups of class I(c).
Shared vertices are shown as small black circles.

Subgroup c,. The structures in this subgroup are based on three-connected nets, and are
obviously of the same topological types as AX, structures formed from tetrahedra sharing one
edge and two vertices (class I (b) of Wells (1983 a)). However, some of the structures that can
be built from tetrahedra cannot be constructed from octahedra for purely geometrical reasons;
these include structures based on three-connected regular or semi-regular polyhedra and the
simple three-connected ladder. Figure 18 shows three layers based on the 62 plane net, including
the two with all six-rings equivalent and one with six-rings of two kinds, and the layers based
on the semi-regular nets 4.8% and 3. 122. Structures based on uniform or Archimedean 3D
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FIGURE 8. The A,X,, complex of subgroup a,. In all stereophotographs of models except figure 14 only
shared X atoms are shown (as balls or connectors).

Ficure 13. Vertex-sharing AX, structure of class I (a;) based on the net 6482

Ficure 14. The AX, structure of class I (a,) based on the diamond net.

(Facing p. 566)
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Freures 21, 24, 28 and 39. For description see opposite.
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Ficure 18. Layer structures of class I (c,) based on three-connected plane nets: (a)—(¢c) 6%, (d) 4.82, (¢) 3.122
The broken lines connect A atoms and emphasize the underlying three-connected nets.

three-connected nets are also topologically possible, for example, 83-b, 9%-a, and 10%-b, and one
10-ring of the AX, structure based on 10%-b is shown in figure 19.
Subgroup c,. This large subgroup gives rise to structures of all four major types, finite, one-, two-,
and three-dimensional. We give here examples only of structures built from units all of the same
kind, namely, the four c, units of figure 17. Units of type (i) joined in pairs give one of the
four-octahedral groups of figure 20, with symmetry mm or 2/m. Groups of the type of
figure 202 may be joined to form a family of prismatic complexes (A,X,,),, in which » has the
value 3, 4, 5, or 6; the upper limit is set by X—X contacts on the outside surface of the complex.
The first member of the family is illustrated in figure 21, plate 2. Alternatively, the
four-octahedron unit can form an indefinitely large number of double chains, of which the
simplest configuration is that of figure 22. The four-octahedron unit of figure 205, on the other
hand, can form 2D and 3D structures. In the layer of figure 23 based on the 4. 8% net, the
edge-sharing pairs of octahedra lie in two parallel planes. An example of a 3D structure is that
based on the net 4.8.10-a (Wells 1979, figure 2.4, p. 12). Figure 24 shows the portion of the
AX, structure which is to be repeated by the translations of a tetragonal body-centred lattice.
The centrosymmetrical units (i) of figure 17 (c,) form layers based on the plane nets 63, 4 . 82,
and 3.122 illustrated in figures 25, 26, and 27. Attempts to build a layer based on the third
semi-regular plane net, 4.6.12, with acceptable distances between X atoms of different
octahedra were not successful. The structure based on the net 103-b is shown in figure 28,
plate 2.

DESCRIPTION OF PLATE 2

Ficure 21. Prismatic complex A,;,X,q formed from the sub-unit of figure 20a.

FiGUure 24. Sub-unit of the body-centred structure based on 4.8.10-a formed from the four-octahedron group
of figure 204.

Ficure 28. AX, structure of class I (c,)(ii) based on the net 10*-b.
Ficure 39. A, X structure based on the net 10%-b.
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Ficure 19. One ring of 10 octahedra in the 3D structure based on the net 10%-b.

(a)

Ficure 22. Double chain formed from the sub-unit of figure 20a.

Ficure 23. Layer of class I(c,)(i) based on the 4.8?% net formed from the sub-unit of figure 205.
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Ficure 25. Layer of class I(c,)(ii) based on the net 6°.

Ficure 26. Layer of class I(c,)(ii) based on the net 4. 82,

Ficure 27. Layer of class I(c,)(ii) based on the net 3. 122,
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An exhaustive study has not yet been made of structures based on the chiral units (iii) and
(iv) of figure 17 (c,); they may include a considerable number of 3D structures. Two 3D
structures have been found which are based on the unit (iii). In one the underlying net is a
less regular form of 6. 102, being built of rings of six octahedra of the kind shown in figure 29.
A second structure is based on a 4. 14? net, but this is not the Archimedean net previously

Ficure 29. Six-membered ring in the structure based on 6. 102

described (Wells 1979, p. 10). Two more 4. 142 nets have now been found (Wells 1983 5): one
tetragonal, the other hexagonal. Like 4 . 142-a the new tetragonal net 4 . 142-b is derived from
the diamond net by replacing points by four-rings, but in the most symmetrical configuration
of 4. 14%-b successive four-rings lie in perpendicular planes, in contrast with 4.142-a in which
the planes of all four-rings are parallel. A model of the octahedral structure may be built from
chains of the kind shown in figure 30. These are to be superposed in perpendicular directions
to produce rings of four octahedra the planes of which are normal to that of the paper. One
ring of four (vertex-sharing) octahedra is shown at the centre of figure 31, where the groups
of four octahedra at the left and right are at different levels, as indicated by the line thicknesses.

Three different rings of four octahedra may be constructed from the unit (iv) and its
enantiomorph (iv)*, namely, the rings made from two (iv) or two (iv)* units, which we
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Ficure 30. Projection of portion of structure based on 4.142-b showing chains at three levels. These are slightly
displaced relative one to another to show the rings of four octahedra (broken lines) normal to the plane of the
paper. The small circles represent shared X atoms in the four-membered rings.
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Ficure 31. Four c,(iii) sub-units forming the vertex-sharing ring of four octahedra in the structure
based on 4. 142%-a.

designate (iv), and (iv)¥, and the ring made from one (iv) and one (iv)*. The last, (iv) (iv)*,
has symmetry 2/m. These three rings (figure 32) differ from that of figure 31 in that alternate
junctions are shared edges and shared vertices. The rings (iv), form a structure based on the
net 4. 142-b, while alternate (iv), and (iv)J rings form a structure based on 4. 142-a. The rings
(iv) (iv)* form an indefinitely large number of double chains, of which the simplest is shown
in figure 33.

(iv), (iv)¥ (ivi(ivn)™

Ficure 32. The three rings of four octahedra formed from the sub-units c,(iv) and its enantiomorph (iv)*.

Ficure 33. Plan and elevation of the double chain formed from sub-units (iv)(iv)*.
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Subgroup c,. The unit c, of figure 17 forms the double chain of figure 34, an example of which
is the structure NbOCI,. The O atoms are at the shared ¢rans vertices of each octahedron. Owing
to the relative positions of the shared vertices no other structures are possible.

Ficure 34. The double chain of class I (cg).

Class 1(d)

Since the terminal X atoms of a pair of face-sharing octahedra lie at the vertices of a trigonal
prism there are two ways of selecting one terminal X atom of each octahedron (figure 354).
Each type of face-sharing pair gives rise to a variety of chain and cyclic structures. The simplest
ones formed from the symmetrical sub-unit shown at the left in (a) are illustrated at (b) and
(¢). The smallest cyclic structure is (A,Xg); and the largest is (A,X;), if all the A atoms are
coplanar, as at (¢), because of contacts between X atoms of different octahedra.

Ficure 35. Structures of class I(d): (a) the two face-sharing pairs of octahedra which have to share the terminal
X atoms shown as black circles; () chain (AX,),; (¢) cyclic complex (A,Xq);.

Structures of class I11: v, = 3, v, =3

There are two ways of selecting three vertices of an octahedron, and each corresponds to
only one structure with acceptable X—X distances. If the three shared vertices belong to one
face the tetrahedral A, X,, complex, of which two views are shown in figure 364, is formed.
This is the idealized structure of the TeCl, tetramer. The other possible structure is the double
chain of figure 364, of which no example appears to be known.
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(b)

Ficure 36. (2) Two views of the finite complex A, X 4. (§) The chain (AX,), of class II.

OCTAHEDRAL STRUCTURES A,X,

Of the solutions listed in table 1 only three appear to be realizable, and these present a great
variety of structures; those in classes I and II are especially numerous.

Structures of class 1: v, = 1, v, =5

The sharing of five X atoms of each octahedron between two octahedra may be achieved
in the ways shown in table 5.

TABLE 5. SuBGROUPs OF cLAss I A, X, STRUCTURES

|4 E F
classI a 5 — —
b 3 1 —
Cl’ { 9 __ (trans edges)
Cy (skew edges)
d 2 1
e — 1 1

Class 1 (a)

Double layers consisting of two layers of octahedra can be cut from the ReO, structure or
from the tetragonal and hexagonal bronze structures, perpendicular to the (001) axis in each
case. The simplest layer of this type, from the ReO, structure, represents the structure of the
anion in Sr,Ti,0,. The double layer projects as figure 54, each square then representing a
vertex-sharing chain of octahedra perpendicular to the plane of the paper. A 3D framework
structure is formed from the A, X, layer of figure 54 by sharing the vertices above and below
the plane of the A atoms. This is the ReO, structure from which one-fifth of the Re atoms
together with the intervening O atoms have been removed as linear rows perpendicular to the
plane of the layer: Re,O,;,—ReO = Re,O,,.

Class 1 (b)

There are two arrangements of the three shared vertices relative to the shared edge, and
therefore in an edge-sharing pair of octahedra there are the four arrangements of shared X
atoms shown in figure 37. The two octahedra are related either by a mirror plane or by a centre
of symmetry.

The arrangement (i) gives double layers formed from, and projecting as, the AX, layer of
figure 18 in which the two layers are related by a mirror plane. The centrosymmetrical
arrangement (ii), on the other hand, forms 3D structures derived from the more complex layers
of figures 26 and 27. If pairs of these layers are related by mirror planes parallel to the plane
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(ii)

1]
@ — @f/@ /
(iii) {iv)
Ficure 37. The four subgroups of A;X; class I(b).

of the paper, cubical or trigonal prismatic groups of octahedra are produced respectively. These

groups are joined by sharing octahedron edges. Each octahedron is then connected to four

others, one by edge-sharing and three by vertex-sharing. The underlying nets, the connected A
systems of A atoms, on which the structures are based are the four-connected nets 438* and

3.42%8% (Wells 1979, figs 3.26 and 3.9 respectively).

The arrangements (iii) and (iv) correspond to (i) and (ii) of b, in figure 12, with additional
sharing of all four polar X atoms in each case. The structures therefore correspond to those
in b,, these illustrations now being projections of structures extending indefinitely in a direction
perpendicular to the plane of the paper. They are accordingly tubular chains and layers built
from NbOCI,-like chains. For the tubular chains (A,X,), = is restricted to the values 3, 4, 5,
and 6 as already noted for the cyclic (A,X,),, structures.

Class 1(c)

In the subgroup c, (sharing of frans edges), only two arrangements of the shared vertices in
the strictly linear chain are permissible (figure 38); all others bring in contact X atoms that
are not to be bonded when the chains are joined by sharing the fifth vertex of each octahedron.

(i)

(i)

Ficure 38. The two permissible arrangements of the shared vertices in class I(c,).
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With all shared X atoms on the same side of the chain (figure 38 (i)), the only structure is the
double chain shown at the right in which the connected system of A atoms (ladder) is the
simplest infinite three-connected system. In structures derived from (ii), with shared X atoms
alternately on opposite sides of the chain, the chains must be inclined to one another, as in
the 3D structures based on the nets 103-b and 103-c; structures based on 2D nets are not possible.
The structure based on 103-b is shown in figure 39, plate 2.

Structures in the subgroup c, (sharing of skew edges) are derivable from the AX, structures
of figure 16. The subgroup is of outstanding interest as providing examples of structures based
on all the following three-connected nets:

2D: 63;4.6.12;
3D: 83-a; 10%-a; 6.102%

The AgX,, ring of figure 16 (i) may be linked by vertex-sharing to produce a configuration
of the 2D 4.6.12 net in which equal numbers of six-rings lie in two parallel planes
(figure 40) or a 3D structure based on 6.10? (figure 41). The skew chain of figure 16 (ii) forms
structures based on two configurations of the 6® net (figure 42). As may be seen from the
elevations of these layers all shared vertices are coplanar in both layers. The helical skew
chains (iii) and (iv) of figure 16 are generated by 3, and 4, axes respectively, and give structures
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Ficure 41. A, X, structure of class I(c,) based on 6. 102,
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Ficure 42. Two configurations of the A,X, layer of class I(c,) based on 6. Circles represent shared X atoms.

based on the 3D three-connected nets 8%-a and 103-a. A projection of the 83-a structure is shown
in figure 43 and a stereo-pair in figure 44, plate 3. Figure 45, plate 3, shows the structure based
on 103-a.

Class 1(d)

For a pair of octahedra that share one face and two vertices there are the two arrangements

of the two shared vertices shown in figure 464 and 4; the former is dissymmetric (¢ and a*).

Each octahedron is joined to three others, by a face and two vertices. Of the structures based

on 2D nets we show in figure 46 ¢ the layer formed from b. Structures based on 3D three-connected

" nets are probably numerous, for structures based on, for example, 103-b can be built from (a),

(a) + (a*), and (b). The second of these is illustrated as a stereo-pair in figure 47, plate 3. This
class of A, X, structures is related to class I (g) of AX; structures:

AX, class I(g): 1 face, 1 edge, and 1 vertex shared;
A, X, class I(d): 1 face, 2 vertices shared, 1 vertex unshared.

We have therefore labelled figure 464 and 4 to correspond to figure 624 and b.

Ficure 43. Projection of the A, X, structure of class I (c,) based on 8%-a. At top left is shown a projection of the
3, helical chain (AX, skew chain) from which the 3D structure may be built.
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(@) (b

Ficure 46. (a) and (). The two arrangements of shared vertices in class I (d) of A,X; structures.
(¢) AgX, layer of type (b).

Class 1 (e)

As each octahedron is joined to two others, only rings or chains are possible (figure 48). Only
the ring of five pairs of octahedra (A,;,X;;) has acceptable XX distances within and outside
the ring. The chain is the form of the cation—water complex in [Na,(H,0),] HAsO,.

Ficure 48. The cyclic complex A,(X;; and the (A,X;), chain of class I(e).

Structures of class 11: v; = 2, v, = 1, v, =3

The three arrangements of the three types of vertex, which correspond to the isomers of a
finite complex Ma,bc,, are illustrated in figure 49. The three subgroups are: (a) 3v, mer, 2v,
trans; (b) 3vy mer, 20, cis; (¢) 3v, fac. Structures found in this class include finite, 1D, and 2D
structures.

Class 11 (a)

The only structure found is the planar layer of figure 50. Since each octahedron is joined
to three others, by sharing two edges (with a common vertex) and one vertex, the structure
is based on a three-connected net, here the simplest such net, 62. One six-ring is indicated by
the black dots, which represent A atoms.
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(a)

(b)

(c)

Frcure 49. Arrangements of the three types of vertex in class II. The open and filled circles represent one- and
three-connected vertices respectively.

b,

b,

,\ -

K

[¢

Ficure 50. A, X, structures of class II(a), (b), and (c).

Class 11 (b)

The layer of figure 50 (a) is built of AX, chains (figure 3654) joined laterally to convert one
v, to a v, vertex. The same chains may be joined to form two other structures which are based
on the (three-connected) ladder, figure 50 (b,), and 62 net, figure 50 (b,). In the layer there
are rings of four vertex-sharing octahedra, but the topology must take account of the edge-sharing
since certain pairs of octahedra are joined only in this way. The layer is therefore properly

described as based on the 62 net.

DESCRIPTION OF PLATE 3

Ficure 44. Portion of the A,X, structure of figure 43.

Ficure 45. A, X, structure of class I(c,) based on 10%-a.

Ficure 47. A, X, structure of classI (d) based on 10°-b.

Ficure 51. The finite A,,X,, complex of class II (c) based on the icosahedron.
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Ficures 44, 45, 47 and 51. For description see opposite.

(Facing p. 578)



Phil. Trans. R. Soc. Lond. A, volume 312 Wells, plate 4

Ficures 52, 59, 60 and 64. For description see opposite.
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Class 11 (c)

Two entirely different types of structure are possible if the three v, vertices belong to one
face. One is a structure based on a five-connected polyhedron with pairs of edge-sharing
triangular faces meeting at each vertex; the relevant polyhedra are the icosahedron, snub cube,
and snub dodecahedron. Pairs of face-sharing octahedra form the polyhedral complexes A,,X,,
(figure 51, plate 3) and A,,X,, (figure 52, plate 4) based on the icosahedron and snub cube
respectively. Only the former has acceptable X—X distances on the outside of the complex when
constructed from regular octahedra, but we illustrate the snub cube structure (which has some
short XX distances) since the octahedra in an actual structure would be distorted owing to
the face-sharing. The Ay, X,,, complex based on the snub dodecahedron cannot be built from
regular octahedra. These structures may be compared with those derived from paris of
edge-sharing tetrahedra based on the same polyhedra (Wells 1983 4). A structure of a second type
in this subgroup is the infinite chain of figure 50c.

Structures of class I111: v, = 2, v, = 2, v, = 2

There are five possible arrangements of the three kinds of vertex, and of these only one
corresponds to a structure which can be constructed with regular octahedra. This is the double
chain of figure 53, which is simply a strip of the AX, layer of figure 65. We have already

Ficure 53. A, X, double chain of class ITI.

mentioned the A,X; framework found as the structure of the anion in BaU,O,. This is formed
from rutile chains joined at alternate O atoms to similar chains running in perpendicular
directions. The junction points (v, vertices) are of the kind shown in figure 3, an arrangement
not to be expected for regular octahedra.

DESCRIPTION OF PLATE 4

Ficure 52. The complex A,,Xg, based on the snub cube.
Frcure 59. AXj structure of class I(d) based on 103-a.
Frcure 60. AX; structure of class I(d) based on 103-b.
Ficure 64. AX structure of class I(g) based on 103-b.
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OCGCTAHEDRAL STRUCTURES AX,

As no structures have been found involving vertices common to six octahedra there are four

classes to consider.
Structures of class 1: v, = 6

This is by far the most important class of AX, structures, and includes nearly all the known
structures built from octahedral coordination groups. The sharing of each X atom between
two octahedral AX, groups may be realized as in table 6 by sharing various numbers of vertices
V, edges E, or faces F; or all three. In (c) and (d) the shared edges must have no vertices in
common, and in (g) the shared edge and face must have no vertex in common.

TasBLE 6. SuBGROUPS OF cLAss I AX,; STRUGTURES

vV E F

classI a 6 — —
b 4 1 —

c 2 2 -

d — 3 —

e — — 2

f 3 — 1

g 1 1 1

Class 1 (a)

Structures in which each X atom of each AX, group is shared with another (different) group
are based on six-connected nets. The simplest is therefore based on the P lattice, and in its most
symmetrical form is the cubic ReO, structure. In this structure, the X atoms occupy
three-quarters of the positions of cubic closest packing, but there are less symmetrical variants
with denser packings of the X atoms, the limit being a structure with hexagonal closest packing
of these atoms. Structures based on more complex six-connected 3D nets include those of
tungsten bronzes and the BX, framework in the pyrochlore structure of compounds A, (B,X¢)X.

Class 1 (b)

The sharing of one edge gives a pair of octahedra that form a rigid unit, if the usual restriction
on distances between X atoms of different octahedra is assumed; this sub-unit has eight
unshared vertices. Sharing of the two pairs of trans vertices of each octahedron leads to a double
chain (as NbOCI,) and these double chains can then be joined by sharing the remaining
vertices to form 3D structures. The projections of these structures (figure 54) are similar to the
AX, layers formed from octahedra sharing one edge and two vertices (figure 18). Each
edge-sharing pair in figure 54 represents the projection of an infinite chain perpendicular to
the plane of the paper. Figure 544 represents the idealized projection of the anion framework
of CaTa,O.

Alternatively, the remaining vertices of each edge-sharing pair of octahedra may be shared
as four pairs (figure 55). The arrangement of these vertices is such that a 3D framework based
on the NbO net is formed; this is the anion framework of KSbO,.

Class 1(c)

In structures of this subgroup the two shared edges may not have a common vertex, since
this would lead to a three-coordinated X atom (vyvertex) and the shared vertices may be trans
(c,) or cis (c,). The sharing of trans vertices (and therefore of opposite edges) leads only to a
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Ficure 55. Arrangement of four edge-sharing pairs of octahedra around one pair in the 3D anion framework
of KSbO, (class I(b)).

layer based on the simplest four-connected net, 4*. This layer (figure 56) is found in the closely
related minerals duttonite, VO,0OH, and paraduttonite, VO(OH),. In the subgroup c, each
octahedron shares two cis vertices and two skew edges, and the irregular tetrahedral disposition
of these vertices and edges leads to a 3D structure based on the diamond (6¢) net. Like the
AX, structures of anatase and niobite (or a-PbQ,) it can be built of chains of octahedra sharing
two skew edges (the AX, chain of TcCl,), and these chains are emphasized in figure 57, where
this AX, structure is compared with that of anatase. In the AX structure of figure 57a the
chains are joined by vertex-sharing, instead of by further edge-sharing as in the AX, structures.
No example is known of this AX, structure, which in a geometrical sense is intermediate
between the anatase and IrF, structures, all being based on the diamond net (table 7).

Class 1(d)

The sharing of three edges (with no common vertices) leads to the well known AX, layer of
numerous trihalides and trihydroxides which is based on the 62 net (figure 58). The mid-points
of the shared edges are coplanar with the A atom and therefore structures can be built which
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Ficure 56. Plan and elevation of the AX, layer of class I (c,).

Frcure 58. The edge-sharing AX, layer of class I (d). The heavy full lines represent shared edges,
and the broken lines indicate the underlying 6 net.

TABLE 7. THREE STRUCTURES BASED ON THE DIAMOND NET

packing of
structure composition  octahedra sharing X atoms
anatase AX, 4 edges c.c.p.
figure 574 AX, 2 edges e
2 vertices P

IrF, AX, 4 vertices h.c.p.
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are based on the most symmetrical forms of the simplest 3D three-connected nets, 10%-a, -b, and
-c. In the structure based on the cubic net 103-a, the X atoms occupy three-quarters of the
positions of cubic closest packing, as in the ReO, structure, while in the edge-sharing structure
based on 10%-b there is cubic closest packing of the X atoms. No examples are known of
compounds with these structures (illustrated in figures 59 and 60, plate 4).

Class 1(e)

The sharing of two opposite faces of each octahedral AX, group leads only to the infinite
chain structure of ZrI,; and other trihalides.

Class 1(f)

The sharing of one face and three vertices of each AX, group results in the very simple
structure shown in plan and elevation in figure 61. Each hexagon in the projection represents
a pair of face-sharing octahedra, the shared faces being at heights 0 and 1. The X atoms occupy

Ficure 61. Plan and elevation of the 3D structure of class I (f).

three-quarters of the positions of ~c (ABAC...) packing. No example appears to be known of
an AX; compound with this structure, but it represents the octahedral anion framework of
high-BaMnOj, in which the Ba** ions complete the closest-packed layers of composition BaOj.

Class 1(g)

The sharing of one vertex, one edge, and one face of each AX, octahedron might seem an
unnecessarily complicated way of attaining the formula AX,, but appears less so when
compared with the structure of, for example, Thl,, in which eight-coordination groups share
one edge and two faces to form a layer based on the 63 net. Structures in this class are based
on three-connected nets, for each octahedron is connected to three others. There are two ways
(figure 62) of selecting the shared vertex of each octahedron (small black circle) since the shared
edge must not have a vertex which is also a vertex of the shared face. No structures based
on the arrangement of figure 62a have been found, but structures of type (4) include layers
based on the 2D nets 63, 4.82% and 4.6.12 (figure 63), and a 3D structure based on 103-b

38 Vol. 312. A
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K1 i

Ficure 62. The two ways of selecting the shared vertices in class I(g).

Ficure 63. Layers in class I (g) based on the plane nets 63, 4.82, and 4.6.12.

(figure 64, plate 4). In figure 63 the underlying three-connected nets are emphasized by showing
some of the A atoms as black dots. ' '

Structures of class 11: v, = 2, v, = 4

The two subgroups correspond to trans (i) or cis (ii) arrangements of the two unshared X
atoms. The only structures appear to be: (i) the layer formed when each octahedron shares
the four equatorial edges (figure 65), as in the anion in NH,(HgCl,), and (ii) the multiple chain
of figure 66. No example of this chain seems to have been reported.

Structures of class I111: v, = 1, v, = 2, v, =3

Examples of three structures in this class are known. The possible arrangements of the three
kinds of vertex correspond to the isomers of an octahedral complex Mab,c, (figure 49).
However, in both (4) and (c) the v, vertices are in c¢is positions and therefore can be shared
either as separate vertices (with different octahedra) or as an edge (with the same octahedron).
There are, accordingly, five cases to consider, and each gives rise to a layer structure
(figures 67—71). There is a further complication, namely, that case (¢) can be realized in a third
way (in the double-chain anion of the NH,CdCl, structure (figure 72)). These subgroups are
summarized in table 8.
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Ficure 65. The class IT(i) layer structure of the anion in NH,HgCl,.

Ficure 66. The multiple chain of class II (ii) with end-on view at right.

68

(o]
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£

Ficure 67. The layer of class III(a), plan and elevation.
Ficure 68. The layer of class III (b;), plan and elevation.

Structures of class IV: v, =1,0,=3,v, =2

There are three arrangements of the three kinds of vertex, analogous to those of figure 494, 5
and ¢. No structures corresponding to (a) (v, frans) have been found, but those of types (5)
and (¢) include a number of structures that may be built from octahedra sharing a pair of skew
edges (as in the cyclic TeMogO$; ion or the skew chain), or a pair of opposite edges (‘rutile

38-2



586

A. F. WELLS
Ficurk 69. The layer of class III (by), plan and elevation.
70

: 71

Ficure 70. The double layer of class ITI(c,).
Ficure 71. The double layer of class ITI (c,).

Ficure 72. Two views of the double chain of class III(c;) and end-on view.
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chain’). In the subgroup b we have the finite group A,,X,,, formed from two parallel rings
of six octahedra (asin TeMogyO$;) joined by sharing one face of each octahedron, and the double
chain formed from two skew chains in a similar way. The analogous double chain formed by
joining two rutile chains laterally by face-sharing (figure 734) belongs to the subgroup c. This
subgroup also includes the fourfold chain (figure 735) and the corrugated layer of figure 73¢,
these structures being formed when each octahedron of the rutile chain shares a third edge and
also one vertex. In the views of the multiple chains shown at the right of figure 734 and 4 and
also in the layer of figure 73¢ the rutile chains are perpendicular to the plane of the paper.

(a)

(b)

L

FAVAVAVANAVAN
VA A AA

Ficure 73. AX, structures of class IV (see text).

TaBLE 8. AX, STRUCTURES OF cLass III

figure example
a 67 MoO,
b, 68 —
b, 69 Th(Ti,Oq)
< 70 —
Cy 71 —
Cy 72 NH,(CdCl,)

OCTAHEDRAL STRUCTURES A, X,

Of the solutions listed in table 1, four appear to be realizable as structures built from regular

octahedra.
Structures of class 1: v, = 1, v, = 1,9, =4

This class is closely related to class IT AX, (v; = 2, v, = 4), the change involving only the
conversion of one of the v, vertices into a v, vertex. Asin class IT AX, there are two arrangements
of the vertices: (i) v, and v, trans, and (ii) v; and v, cis.

Subgroup (i). Two AX, layers of figure 65 may share all of their vertices that project to one
side of the layer to form a double layer which has the same projection as the single layer.

Subgroup (ii). The AX, chain of figure 66 can share one more vertex of each octahedron to
form the layer shown in plan and elevation in figure 74 or the very simple 3D structure shown
in projection in figure 75. The unit cell of this latter structure contains only 2(A,X;).
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75

Ficure 74, Plan and elevation of A,X; layer of class I (ii).

Ficure 75. Projection of 3D A,X; structure of class I (ii).

Structures of class 11: v, =1, v, =3, v, =2

The possible arrangements of the three kinds of vertex are those of figure 49, but structures -
have been found with only one of the three arrangements, namely, fac of figure 49¢. The
structures found are layers formed from double edge-sharing (‘rutile’) chains, which are
perpendicular to the plane of the paper in figure 76.

Structures of class 1I1: v, = 3, v, = 3

Structures in this class may be derived from AX, structures of class III (v, = 1,0, = 2,v, = 3)
by joining the v, vertices of pairs of octahedra. The possible arrangements of vertices are only (a)
mer and (b) fac, but in (@) we may distinguish two cases: (a,) the three v, vertices are shared
as separate vertices (with three other octahedra), or (a,) two of the v, vertices are shared as
an edge. The A, X, structures are related to the AX, structures of class I1T as in table 9. The
two layers of figures 67 and 68 may be joined through the v, vertices to form the same 3D A, X,
structure, projections of which, in two perpendicular directions, are the same as the projections
of the layers (upper diagrams in figures 67 and 68). This is the idealized structure of V,O;,
built of regular octahedra. The 3D A,X; structure formed from the AX; layer of figure 69
is shown in figure 77. In the 3D A,X; structures formed from the double AX, layers of
figures 70 and 71 pairs of double layers are related by mirror planes, and therefore the

N AVERRVAV

Ficure 76. Elevation of A,X; layer of class I built from double rutile chains.
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é
77 e

Figure 77. Projection of 3D A,X; structure of class I1I (a,).
Ficure 78. Elevations of A,X; layers of class III (b).

TaBLE 9. RELATED AX,; AND A, X, STRUCTURES

AX structure of class IIT A,X; structure of class II1
figure

11‘\4)‘2?1; lyi‘ﬁer g;} a, idealized V,0,

Th(TiO) layer 69 a, 3D structure (figure 77)

double layers ;?} b} 3D structures

double layer 72 layers (figure 78)

projections of the structures are the same as those of the double layers. There is an indefinitely
large number of configurations of the A,X; layer formed from double edge-sharing (‘rutile’)
chains, the two simplest of which are illustrated in figure 78.

Structures of class IV: v, = 4, v, = 2

There are two possible arrangements of the two kinds of vertex, namely, trans and cis
arrangements of the two v, vertices. Structures have been found only for the latter arrangement.
The double (edge-sharing) chain of figure 53 may be joined to two other similar chains to form
either a quadruple chain or a layer, by sharing one of the v; vertices of each octahedron, the
composition becoming AX,. Sharing of both v, vertices of each octahedron gives a layer of
composition A, X;. Figure 79 shows on the left the projection of this layer and at the right two
elevations. There is, therefore, a family of related structures in which each octahedron shares
three (equatorial) edges (table 10). Double face-sharing AX, chains formed from two rutile
chains of which each octahedron shares one face give rise to two structures which are not
illustrated because they project as the AX, structures of figure 356 and ¢. If the pairs of
octahedra in these illustrations represent double face-sharing chains perpendicular to the plane
of the paper, the A, X, structures are seen to be respectively corrugated layers, of which the
simplest is (4), and tubular chains (¢). As in the AX, structures, the rings in these tubular chains
are restricted to those consisting of 6, 8, 10, or 12 octahedra because of contacts between X
atoms of different octahedra.
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S ™

Ficure 79. Plan and elevations of A,X; double layer of class IV in which each octahedron shares three edges.

TaBrLE 10. RELATED A,X,, AX,; AND A, X, STRUCTURES

vy vy vy structure figure
2 2 2 A,X, double chain 53
1 3 2 AX, fourfold chain 54
AX, layer 54
— 4 2 A,X; layer 79

The AX; (Zrl,) chains formed from octahedra sharing opposite faces may be joined laterally
by sharing edges to produce the double A,X; chain of figure 80. Continuation of this process
leads to a corrugated layer of composition AX, (table 11).

Ficure 80. Double chain A,X; of class I'V formed.from face-sharing AX, chains.

TasrLe 11. RELaTED AX,, A, X, AND AX, STRUCTURES

Uy Uy
Zrl, chain 6 — AX,
double chain 4 2 AX,
layer 2 4 AX,
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OCTAHEDRAL STRUCTURES AX,

We have here to examine five classes (table 1), of which the first includes most of the known
AX, structures built from octahedral AXg groups.

Structures of class 1: v, = 6

As three octahedra meet at each vertex there must be sharing of one or more edges of each
octahedron, and it is convenient to list the more important structures as in table 12.

The essential features of the first two structures may be deduced directly from the reasonable
requirement that the distance between any pair of X atoms belonging to different octahedra
may not be less than the octahedron edge length. It follows that if three octahedra meet at
a point (v, vertex) there must be at least one edge shared and the edge-sharing pair of octahedra

X
is a rigid unit with A< >A coplanar. The position of the third octahedron may range between
X :
the positions outlined by the full and broken lines in figure 814, either of which corresponds

(@) b (b)

Ficure 81. Three octahedra meeting at a point. In (a) the two edge-sharing octahedra are seen end-on;
in (b) the octahedra are viewed in the direction of the arrow in (a).

TaBLE 12. AX, STRUCTURES OF CLASS |

number of shared  number of edges

edges meeting shared by each edges shared packing of
structure at each vertex octahedron (figure 82) X atoms
rutile-CaClg} i 9 opposite (a) h.c.p..
a-PbO, { skew (b) h.c.p.
anatase 2 4 (¢) c.c.p.
atacamite (d) c.c.p.
CdCl, } 3 6 {(e) c.c.p.
CdlI, (e) h.c.p.
figure 84 a 1 and 3 4 N h.c.p.

(equal numbers)

to h.c.p. X atoms, the c.p. layers being perpendicular to the plane of the paper and intersecting
it in the lines aa or bb. Either of these arrangements corresponds to the h.c.p. CaCl, structure,
with ideal bond angles at X of 90° and 132° (two). The intermediate position shown by the
dotted lines represents the situation in the tetragonal rutile structure, in which X has three
coplanar A neighbours and ideal bond angles of 90° and 135° (two). Figure 815 shows the
three octahedra drawn with full lines in (a) viewed in the direction of the arrow, that is,
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projected on a c.p. layer. In an AX, structure constructed from equivalent octahedra, the
number of edges shared by each octahedron is equal to twice the number of shared edges meeting at
each vertex. (If each octahedron shares n edges, the total number of shared edges in an assembly
of alarge number N of octahedra is } Nn, for each edge is common to two octahedra. The number
of vertices (X atoms) is 2N, and if m shared edges meet at each vertex the total number of shared
edges is 1(2Nm), because each edge joins two X atoms. Hence Nn = Nm, or n = 2m.) In the
simplest structure, with one shared edge at each vertex, each octahedron therefore shares two
edges which must have no vertex in common, that is, they must be either opposite or skew edges.
These structures are the rutile-CaCl, and a-PbO, (niobite) structures, both h.c.p., which may
be built from chains of octahedra sharing opposite or skew edges. The sharing of additional
edges gives the structures listed in table 12; the edges shared by each octahedron are shown
in figure 82. We do not illustrate the more familiar structures of table 12. The derivation of

82(a) (d)

\/

(b) (e)

(c) (f)

Ficure 82. The heavy lines indicate the edges of each octahedron shared in the AX, structures of table 12.

the anatase structure from skew chains was illustrated in figure 57. The atacamite structure
(the idealized structure of the mineral atacamite, Cu,(OH),Cl) may be derived by removing
the appropriate rows of A atoms from the most symmetrical octahedral AX structure (NaCl)
or by stacking the double layers of figure 71 in the way shown diagrammatically in figure 83.
The stacking of such layers directly above one another gives the class II structure noted later.
The last entry in table 12 is one of a family of structures built from double rutile chains
(figure 72) and represents the structure of a-AlO . OH. All the octahedra are equivalent, sharing
the edges of figure 82, but the vertices are of two kinds, at which either one or three shared edges
meet. The structure of figure 845 is the 3D Eu}'O, framework of Eu'Euj'O, or the Fe,O,
framework of CaFe,O,, while figure 84¢ represents the a-MnO, (hollandite) structure.

Structures of class 11: vy = 2, v, = 4
There are two subgroups in this class corresponding to (@) trans or (b) cis arrangement of
the two v, vertices. It is not necessary to illustrate all of the structures in this class because many
of them may be formed in obvious ways from structures already described by further vertex-
or edge-sharing.
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83

—— -
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Ficure 83. The 3D AX, (atacamite) structure formed by stacking the double AX, layers of figure 71.
The full and broken lines represent edge-sharing (rutile) chains.

AVAVERNAVAV,
AA T VAN

(c)

Ficurk 84. AX, frameworks of class I built from double edge-sharing rutile chains.

Subgroup (a). Sharing of edges between two parallel ZrI, chains gives the double A, X, chain
of figure 80. Continued sharing of edges in this way leads to a corrugated layer of composition
AX, in which each octahedron shares two opposite edges and two opposite faces. In figure 63
we showed three layers in which each octahedron shares one vertex, one edge, and one face,
and all vertices are two-connected. Stacking of these layers by sharing two or more edges of
each octahedron (those connecting the double circles) converts these vertices into v, vertices.
The 3D frameworks so formed project as the layers of figure 63. Figure 65 shows the AX; layer
(v, =2, v, =4) formed from octahedra sharing four equatorial edges. The same figure
represents the projection of the 3D AX, structure formed by stacking such layers above one
another, when the v, vertices become v, vertices.

Subgroup (b). Structures extending indefinitely in one, two, or three dimensions are possible
in this subgroup. A column of rings of six octahedra stacked face-to-face may be described as
a tubular AX, chain. The double chain formed from two Zrl, chains by edge-sharing was
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illustrated in figure 80. The corresponding layer belongs to subgroup (a), having trans v,
vertices. This layer could alternatively be described as built of rutile chains running in a
direction at right-angles to the face-sharing chains. There is a closely related layer built from
skew edge-sharing chains. This layer (figure 85), belongs to subgroup (b), having cis v, vertices.
Another layerin thissubgroup is that of FeOCl, y-FeO . OH, and the anionin Rb,(Mn,Ti,_,0O,)
(figure 86). Two 3D structures project as the double layers of figures 70 and 71. These structures
are perhaps most easily visualized as formed from the AX; chain of figure 66, the chains being
set up normal to the plane of the paper and joined by sharing lateral vertices or edges.

M <
> <
> <
> <
> <

Ficure 85. AX, layer of class II (b).

Ficure 86. Elevation of AX, layer of class II(b).

Structures of class I11: v, =1, v, =5

The only structure so far found in this class is the double layer of figure 87. The two side
views of the layer show that it may be built either from vertex-sharing (ReO,) chains (above) or
from edge-sharing (rutile) chains (below). In this structure each octahedron shares eight edges.

Structures of class IV: v, = 1,0, =3,v, =2 |

As in class IT A, X, the arrangements of the three kinds of vertex correspond to the isomers
of an octahedral complex Mab,c, (figure 49), the black circles representing v; and the open
circles v, vertices. The structures we have found are all of the type of figure 49¢. They are formed
from double edge-sharing chains (figure 88) and from double face-sharing rutile chains
(figure 89). Examples of these 3D frameworks appear to be confined to the anion framework of
CaTi,O, (figure 885) and to the structure of y-Cd(OH), (figure 89a).
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Ficure 87. Two side views of AX, layer of class III.

(a) W\ W
VAN

A/

VAYA
N
N

Ficure 88. Projections of 3D AX, structures of class IV formed from edge-sharing double rutile chains perpendicular
to the plane of the paper.

s

1

(b)

(@) % ; g
Ficure 89. Projections of 3D AX, structures of class I'V formed from face-sharing double rutile chains perpendicular
to the plane of the paper.
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Structures of class V:vy, =2, v, =1, 9, = 1

The only example found of a structure of this class is the CdCl,-like layer built of
‘super-octahedra’ A X, ,.

OCTAHEDRAL STRUCTURES A, X,

Structures have been found corresponding to four of the seven solutions of table 1. These
structures may be derived from the h.c.p. or c.c.p. AX structures (NiAs or NaCl structures)
in various ways.

Structures of class 1:v, = 6

Three structures in which all octahedra are equivalent may be built from the AX,(AICI,)
layer of figure 58, the layers being stacked so as to maintain hexagonal or cubic closest packing
of the X atoms. The simplest h.c.p. structure projects as figure 58, and results from removing
rows of A atoms parallel to [0001] from the NiAs structure. As in that structure each octahedron
shares two faces. The coordination group of every X atom is that corresponding to (a) in figure 3.
If adjacent layers are related by a glide plane instead of a mirror plane (figure 90), one half

73
e‘:&m

Frcure 90. Adjacent edge-sharing AX, layers in the corundum structure related by a glide plane.

of the octahedra of each layer fall above empty spaces of the layer below, and in the resulting
3D structure each octahedron shares one face. The coordination group of every X atom is of
type (¢) in figure 3; this is the corundum structure. Stacking of the AX, layers to give cubic
closest packing of the X atoms and maintaining the same translation of adjacent layers gives
the structure of figure 91, which is alternatively derived by removing one-third of the A atoms
from the NaCl structure in rows parallel to one set of [110] axes. In this structure there are
equal numbers of X atoms with the coordination groups (b) and (d) of figure 3.
Examination of models of the groups of four octahedra of figure 3 shows that for the
arrangement (¢) the environment of X most closely approximates to the ideal for an ionic crystal
(regular tetrahedral). The arrangement (¢) is nearly as favourable, but there does not appear
to be a c.p. structure in which all X atoms would have coordination of this type. We might
mention here that the simplest alternative to occupying two-thirds of the metal positions
between each pair of c.p. layers (the pattern of sites of figure 58 or figure 90) is to have
alternately all and one-third of these positions occupied between successive pairs of c.p. X layers.
The pattern of vacant metal sites in alternate layers of metal atoms is then the pattern of filled
sites in every layer of the corundum structure. The simplest structures of this kind are those
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Figure 91. The c.c.p. A;X; stucture of class I viewed along a [110] direction which is perpendicular to the plane
of the paper. The black dots mark the positions of the rows of missing A atoms.

of trigonal and rhombohedral Cr,S,, but in these structures the CrSy octahedra share different
numbers (0, 1, or 2) of faces.
Structures of class 11: v; = 3, v, = 3

The two layers illustrated in figure 92 consist of (a) a slice of the NiAs structure parallel to
(0001), and (b) a slice of the NaCl structure parallel to (111). In (a) each octahedron shares

(@) (b)
Ficure 92. Two A,X; layers of class II, perpendicular to the plane of the paper, derived from (a) the NiAs,
: and (4) the NaCl structures.

one face and six edges, while in () nine edges of each octahedron are shared. The coordination
of the six-coordinated X atoms is trigonal prismatic in () and octahedral in (5).

Structures of class I11: v, =1,v,=5

Only one structure has been found in this class: the 3D structure of figure 93. It can obviously
be derived from the AX, class III structure (figure 87) by joining the double layers to form
a 3D structure, the v, vertices becoming v, vertices. As in the double layer, each octahedron
shares eight edges. In this structure there is cubic closest packing of the X atoms, and the
structures may alternatively be derived by removing rows of A atoms from the NaCl structure
parallel to a set of [110] axes; compare the structure of figure 91, which results from removal
of A atoms along a different set of [110] axes. No structure in this class has been found with
h.c.p. X atoms.
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A

L]

Ficure 93. The A,X, structure of class ITI. As in figure 91 the black dots mark the positions
of the rows of missing A atoms.

Structures of class IV: v, = 1,0, = 2, v, =3

Only one structure has been found in this class. It is a corrugated double layer which is a
vertical slice of the NiAs structure (figure 94). Each octahedron shares two faces and four edges.

The A, X, structures described above are summarized in table 13. They are separated into
two groups corresponding to the packing (h.c.p. or c.c.p.) of the X atoms and arranged in order
of decreasing numbers either of shared faces or of edges.

(a)

(b)

7
> ‘ <

-~ | —

Ficure 94. The A,X; layer structure of class IV viewed in directions (a) perpendicular and
(b) parallel to the plane of the layer.
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TABLE 13. SUMMARY OF A,X,; STRUCTURES

packing of number of shared
X atoms faces edges class figure
h.c.p. 2 3 I 58
— 4 v 94
1 3 I 90
— 6 II 92a
c.c.p. 0 7 I 91
— 8 III 93
— 9 II 925

OCTAHEDRAL STRUCTURES AX

The two layers of figure 92a and b are slices of the NiAs and NaCl structures, in which
structures the A atoms occupy all the octahedral interstices between layers of hexagonal (4)
or cubic (¢) close-packed X atoms respectively. In the NiAs structure the coordination of X
is trigonal prismatic, and each octahedron shares six edges and two faces, while in the NaCl
structure the coordination of X is octahedral and each octahedron AXg shares all twelve edges.
A third structure in which all octahedra are equivalent is formed by alternating double layers
of types a and b (figure 92). In this structure there is ¢ packing of X atoms. Each octahedron
shares nine edges and one face, and there is trigonal prismatic and octahedral coordination
of equal numbers of X atoms.

THE PAGCKING OF X ATOMS IN STRUCTURES BASED ON THE NET 103-b

In deriving the structures described above we have been concerned only with the ways in
which regular octahedra may be joined together to form structures with compositions AX,, or
A, X, that is, we have fixed the coordination number of X at 6 and have found the various
combinations of c.ns of X that are consistent with the particular formula. We have not discussed
the geometrical configurations of the structures; these depend on interbond angles.

No variation in A-X—A bond angle is possible for X atoms belonging to shared edges (A-X-A,
90°) or shared faces (A—X-A, 701°), but for X atoms shared as separate vertices the angle may
range from 180° to 132°. The A—X—A angles are related to the mode of packing of the X atoms,
and this aspect of the structures is of interest for the following reason. If the density of packing
is less than that of closest packing there is the possibility that it might be increased by rotations
of octahedra relative to one another, so increasing the van der Waals contribution to the lattice
energy. For example, the X atoms in the ReQOj, structure occupy three-quarters of the positions
of cubic closest packing, and Re-O—Re is 180°. Rotation of the octahedra is possible to form
a hexagonal closest packed AX, structure in which M—X-M is reduced to 132°, as in RhF,.
The point of chemical interest is that there must be a reason for the less dense structure, which
in this case is the ‘superexchange’ through O in ReO,.

In table 14 are listed seven structures based on the 3D three-connected net 103-b in which
all shared X atoms are two-connected. In all these structures except that of figure 60 there
is sharing of one or more vertices (as opposed to edges or faces), and all of the others except
that of figure 47 have been illustrated with collinear A—X—A bonds, that is, in their least dense
configurations. The lowest packing density of X atoms is that in the A,X, structure, in which

39 Vol. 312. A
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TABLE 14. PACKING OF X ATOMS IN STRUCTURES BASED ON THE NET 103-b

types of vertices octahedra packing of
formula v, vy sharing X atoms figure
AX, 3 3 3V (mer) % c.c.p. 6
AX, 2 4 2V 1E
(class Ic,) ic.cp. 19
(class Tcy(ii)) $c.cp. 28
AX, 1 5 1V 2E 7c.c.p. 39
2V 1F Zh.cp. 47
AX, 0 6 3E c.c.p. 60
1V1E1F he 64

there is only vertex-sharing. This structure may be derived from the ReO, structure by
removing one half of the A atoms and one quarter of the X atoms: A, X,,—A, X, = A, X,. The
packing density of the X atoms is therefore ()% or % of that of cubic closest packing. The two
AX, structures may be derived from the AX, structure which projects as figure 65, by removing
three fifths of the A atoms and one fifth of the X atoms: A, X, —A,X, = A,X,. The A, X,
structure of figure 39 is also obviously derivable from the same AX, structure.
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FiGure 8. The A,,X,, complex of subgroup a,. In all stereophotographs of models except figure 14 only
shared X atoms are shown (as balls or connectors).



Ficure 13. Vertex-sharing AX, structure of class I (a,) based on the net 682.



FIGURE 14. The AX, structure of class I (a,) based on the diamond net.



X4 formed from the sub-unit of figure 20a.

12

lex A

Ficure 21. Prismatic comp



FiGURE 24. Sub-unit of the body-centred structure based on 4.8.10-a formed from the four-octahedron group
of figure 205.
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Ficure 39. A, X, structure based on the net 103-b.
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Ficure 44. Portion of the A, X, structure of figure 43.



Ficure 45. A, X, structure of class I (c,) based on 10%-a.
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Ficure 47. A, X, structure of classI (d) based on 10°-b.



Ficure 51. The finite A,,X,, complex of class II (c) based on the icosahedron.



FiGure 52. The complex A,,X;, based on the snub cube.



Ficure 59. AX, structure of class I (d) based on 103-a.



Ficure 60. AX, structure of class I (d) based on 103-b.



Ficure 64. AX, structure of class I (g) based on 103-b.



